Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Phys Rev Lett ; 125(10): 101102, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955328

RESUMO

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

2.
Phys Rev Lett ; 123(23): 231108, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868444

RESUMO

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.

3.
Phys Rev Lett ; 123(16): 161102, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702344

RESUMO

We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M_{⊙}-1.0 M_{⊙}. We use the null result to constrain the binary merger rate of (0.2 M_{⊙}, 0.2 M_{⊙}) binaries to be less than 3.7×10^{5} Gpc^{-3} yr^{-1} and the binary merger rate of (1.0 M_{⊙}, 1.0 M_{⊙}) binaries to be less than 5.2×10^{3} Gpc^{-3} yr^{-1}. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M_{⊙} black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M_{⊙} black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.

4.
Phys Rev Lett ; 120(20): 201102, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864331

RESUMO

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω_{0}^{T}<5.58×10^{-8}, Ω_{0}^{V}<6.35×10^{-8}, and Ω_{0}^{S}<1.08×10^{-7} at a reference frequency f_{0}=25 Hz.

5.
Living Rev Relativ ; 21(1): 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725242

RESUMO

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

6.
Phys Rev Lett ; 120(9): 091101, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547330

RESUMO

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

7.
Phys Rev Lett ; 120(3): 031104, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400511

RESUMO

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.

8.
Phys Rev Lett ; 119(16): 161101, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29099225

RESUMO

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

9.
Phys Rev Lett ; 119(14): 141101, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053306

RESUMO

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5_{-3.0}^{+5.7}M_{⊙} and 25.3_{-4.2}^{+2.8}M_{⊙} (at the 90% credible level). The luminosity distance of the source is 540_{-210}^{+130} Mpc, corresponding to a redshift of z=0.11_{-0.04}^{+0.03}. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg^{2} using only the two LIGO detectors to 60 deg^{2} using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

10.
Phys Rev Lett ; 118(22): 221101, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621973

RESUMO

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2_{-6.0}^{+8.4}M_{⊙} and 19.4_{-5.9}^{+5.3}M_{⊙} (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_{eff}=-0.12_{-0.30}^{+0.21}. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880_{-390}^{+450} Mpc corresponding to a redshift of z=0.18_{-0.07}^{+0.08}. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_{g}≤7.7×10^{-23} eV/c^{2}. In all cases, we find that GW170104 is consistent with general relativity.

11.
Phys Rev Lett ; 118(12): 121101, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28388180

RESUMO

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

12.
Phys Rev Lett ; 118(12): 121102, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28388200

RESUMO

We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8} erg cm^{-2} s^{-1} Hz^{-1}(f/25 Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8} sr^{-1}(f/25 Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5, and 7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

13.
Blood Cancer J ; 7(3): e543, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304402

RESUMO

Treatment advances for multiple myeloma (MM) that have prolonged survival emphasise the importance of measuring patients' health-related quality of life (HRQoL) in clinical studies. HRQoL/functioning and symptoms of patients with relapsed/refractory MM (RRMM) receiving second- or third-line lenalidomide or bortezomib treatment were measured in a prospective European multicentre, observational study at different time points. At baseline, patients in the lenalidomide cohort were frailer than in the bortezomib cohort with more rapid disease progression at study entry (more patients with Eastern Cooperative Oncology Group performance status >2, shorter time from diagnosis, more chronic heart failure, higher serum creatinine levels, more patients with dialysis required). About 40% of the patients receiving lenalidomide discontinued the study in <6 months while 55% in the bortezomib cohort discontinued. No substantial HRQoL deterioration was observed for the first 6 months in patients with RRMM receiving one or the other treatment. For patients still on treatment at study completion (month 6), only the European Organization for Research and Treatment of Cancer Quality-of-Life Core domains of Diarrhoea and Global Health Status/QoL had worsened in the lenalidomide and bortezomib cohorts, respectively. A clinically meaningful deterioration in HRQoL was more often observed for patients who discontinued the study prior to 6 months in the bortezomib cohort than in the lenalidomide cohort.


Assuntos
Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Qualidade de Vida , Talidomida/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Comorbidade , Resistencia a Medicamentos Antineoplásicos , Europa (Continente) , Feminino , Humanos , Lenalidomida , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Estadiamento de Neoplasias , Recidiva , Retratamento , Talidomida/administração & dosagem , Talidomida/efeitos adversos , Talidomida/uso terapêutico , Resultado do Tratamento
14.
Phys Rev Lett ; 116(24): 241102, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367378

RESUMO

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160} Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610 deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

15.
Phys Rev Lett ; 116(24): 241103, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367379

RESUMO

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180} Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

16.
Phys Rev Lett ; 116(22): 221101, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314708

RESUMO

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 10^{13} km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

17.
Phys Rev Lett ; 116(13): 131103, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081966

RESUMO

Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

18.
Phys Rev Lett ; 116(13): 131102, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081965

RESUMO

The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

19.
Phys Rev Lett ; 116(6): 061102, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918975

RESUMO

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

20.
Phys Rev D ; 93(12)2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818163

RESUMO

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...